1. INTRODUCTION

My goal as an instructor is to not only encourage students to become independent thinkers, but to acknowledge the precarious yet rewarding process of reaching a final answer. I strive to foster independence in the classroom by highlighting diverse thought and encouraging personal growth for students as well as myself.

In this document, I outline my teaching experience and provide supporting evidence of effective undergraduate instruction. Please see my Teaching Statement, attached separately, for a full description of my perspective.
2. TEACHING EXPERIENCE

I have served as Instructor of Record for the courses listed below at North Carolina State University (NCSU). Teaching responsibilities for this role include: writing the syllabus, developing and delivering lectures and class activities, writing tests, grading quizzes, and hosting office hours. In sections of more than 50 students, I also managed and coordinated with a peer graduate teaching assistant.

› (Single Variable) Calculus I: 71 students (Spring 2018), 74 students (Fall 2016)
› (Multivariable) Calculus III: 49 students (Fall 2017)

3. TEACHING EVALUATIONS

3.1 SUMMARY OF STUDENT EVALUATIONS

At the conclusion of each semester students at NCSU can give anonymous feedback through online evaluations. The following table summarizes a few response questions in each of my courses taught. The mean score is displayed and the *department mean score is parenthesized for reference*.

<table>
<thead>
<tr>
<th>Semester:</th>
<th>Spring 2018</th>
<th>Fall 2017</th>
<th>Fall 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response rate:</td>
<td>82.4%</td>
<td>98%</td>
<td>94.7%</td>
</tr>
<tr>
<td>The instructors teaching aligned with courses learning objectives/outcomes.</td>
<td>4.6 (4.5)</td>
<td>4.5 (4.4)</td>
<td>4.8 (4.4)</td>
</tr>
<tr>
<td>The instructor was prepared for class.</td>
<td>4.7 (4.5)</td>
<td>4.5 (4.3)</td>
<td>4.8 (4.4)</td>
</tr>
<tr>
<td>The instructor gave useful feedback.</td>
<td>4.4 (4.3)</td>
<td>4.2 (4.0)</td>
<td>4.7 (4.1)</td>
</tr>
<tr>
<td>The instructor consistently treated students with respect.</td>
<td>4.8 (4.5)</td>
<td>4.7 (4.4)</td>
<td>4.8 (4.5)</td>
</tr>
<tr>
<td>Overall, the instructor was an effective teacher.</td>
<td>4.4 (4.3)</td>
<td>4.4 (4.1)</td>
<td>4.7 (4.1)</td>
</tr>
</tbody>
</table>

Here are some qualitative comments from the free response portion of the anonymous evaluations.

› Probably the best math instructor that I've had at NC State. I usually struggle to keep up in class, but with Faye, I actually understood the concepts and was excited to answer questions on my own. (Calculus I, Spring 2018)
Faye is an excellent instructor. I always enjoy her cheery greeting in the morning and her funny jokes to wake us up. I really love when she admits her own mistakes. (Calculus I, Spring 2018)

“Faye Pasley was a phenomenal calculus teacher. She broke down difficult concepts and made them easier to understand, resulting in better comprehension of material. She very obviously cares about her students and wants them to succeed. However, there isn't any handholding, which is a good thing. Her lecture formats proved to be very effective. I like it when teachers don’t just read off of a power point.” (Calculus I, Spring 2018)

“I think Faye is a really good teacher and her teaching techniques were really effective. She made changes to her teaching style after test 1 so that the students were able to learn better!” (Calculus III, Fall 2017)

“Faye Pasley is a wonderful professor, and you could tell she wanted to help us learn, she wasn’t there just to give a lecture. She managed this class very well, along with her also being a student, she gave great feedback, she was easy to approach, she was all around an awesome teacher in a difficult subject. Mrs. Pasley after the first test saw that students were struggling with some concepts...She then asked us to tell her what she could do better, and she adapted to the class. After this, the class was very smooth and was an awesome learning environment, even though it was at 8:30 AM.” (Calculus III, Fall 2017)

“Faye did an excellent job of imparting knowledge to us as we traversed through the theories and execution of difficult Calculus concepts. This excellence was produced through allowing questions during and after class and forcing our class to provide feedback to various questions during lecture. She also allowed time for students to work example problems to gain experience and confidence during class. I was truly appreciative of the various opportunities Faye gave us to work through problems.” (Calculus III, Fall 2017)

“Ms. Pasley is the best math instructor I have had thus far. She is very detailed in her teaching, works hard to make sure every student understands the material, and shows that she cares about the success of her students. All the necessary components of a great professor.” (Calculus I, Fall 2016)

“The instructor was very kind to the students and was always prepared for class. She explained the concepts very well and thoroughly. The course was well organized and put together.” (Calculus I, Fall 2016)

“She always took her time when explaining material to make sure students understood and used correct mathematical terms...Offered help outside the
classroom or answered questions during class. She wrote out notes in class as she explained material or worked out problems. Gave us a lot of examples when explaining a relatively harder concept like Related Rates or Optimization. Loved having her as my teacher. (Calculus I, Fall 2016)

3.2 SUMMARY OF FACULTY EVALUATIONS

Dr. Seth Sullivant, Distinguished Professor and Administrator of the Graduate Program at NCSU, observed my Calculus I class twice during Spring 2018. Overall, he believed I was a prepared, effective instructor, but during his first observation suggested that I “work on letting the students struggle a bit with problems” more. Throughout the semester I aimed toward playing a smaller role and instead allowed students to ask specific questions and explore further in small groups. Additionally, I attended a workshop on Inquiry-Based Learning during June 2018 (more details in Section 4.2). This workshop gave me confidence to put more responsibility on students productively through active learning strategies. Complete documentation of both of Dr. Sullivant’s observations may be found in Appendix D, pages 13–17.

Dr. Molly Fenn, Teaching Associate Professor and Assistant Department Head at NCSU, observed my Calculus III course during Fall 2017. Her feedback was as follows: “Thanks for letting me sit in on your class. I love calc 3 but haven't taught it in several years, watching your class made me want to teach it again. You were doing a great job asking the class lots of questions and giving them time to work on things. You seemed confident and calm and well-organized. Nice job all around!”

4. IMPROVEMENT ACTIVITIES

I seek to improve my teaching strategies through frequent participation in development opportunities. These activities inform my perspective through collaboration with a diverse set of educators inside and outside of mathematics. I highly value these experiences and look forward to future opportunities.

4.1. SERVICE

› Graduate Instructor Support & Tools (GIST).
 NCSU, Fall 2018–Spring 2019

This organization fosters communication and partnership among graduate student instructors. It offers a collection of materials for each NCSU mathematics course,
peer observation as well as workshops and panel discussions related to teaching. As a committee member, my responsibilities include: reorganizing course materials into an improved format, writing FAQ’s for graduate students, and implementation of the peer observation system.

› Graduate Student Course Development Seminar.
NCSU, Summer 2018

I co-developed this seminar which ran workshops every other week during the summer; it now runs as a subset of GIST. Its purpose is to encourage teaching-related dialogue between graduate student instructors and teaching assistants. I led two meetings called “Objectives & Outcomes: Goals for Learners and Instructors” and “Brainstorming Solutions to Classroom Scenarios: Leading Whole Class Discussions” which involved discussing a pedagogical reading and utilizing MAA online instructional resources.

4.2. PROFESSIONAL DEVELOPMENT

› NSF PRODUCT Inquiry Based Learning (IBL) Workshop.
MAA Carriage House, Washington DC, June 2018

This is a four-day workshop whose purpose is to develop active learning practices to successfully implement IBL in a target course. Here, I also connected with mathematics educators from across the country. I am motivated and eager to incorporate these learned techniques in my classroom and communicate my experiences back to the IBL community in the future.

The Graduate School, NCSU, Fall 2017

This is a 16-week series which runs once per week for 3 hours. It contributes 44 hours (out of 100 required hours) of professional development toward the Graduate School’s Teaching and Communication Certificate. This series serves as an introduction to backward course design and hosts students from any academic area. Over the semester, we developed a mock course and refined its syllabus (printed, visual, and online versions) and its learning outcomes. These materials are meant to be a starting point for developing purposeful lesson plans and curricula. We also discussed and experimented with several pedagogical topics including feedback, assessment, misconceptions, and use of technology.
5. ARTIFACTS OF TEACHING

In this section I highlight three artifacts from my most recent course taught, Calculus I.

› **Concept map (Appendix A, page 7)**

This is a visual representation of my personal approach to mathematical problem solving. I assign this as a reflective activity for students after the first test. Please see my teaching statement for more information.

› **Calculus I Syllabus (Appendix B, page 8)**

This syllabus was originally produced in the Lesson, Course, & Curriculum Design development series (see Section 4.2). This document includes required institutional information, measurable learning outcomes, course policies, grade format, and statements regarding diversity, accommodations, and academic integrity.

› **Calculus I Final Exam (Appendix C, page 11)**

This final exam is meant to be completed within two hours, leaving one hour of “extra” time in the exam period. While questions vary in difficulty, I typically aim to ease students into the harder questions (e.g., #5) by breaking the questions into several parts.
APPENDIX A: CONCEPT MAP

SCIENTIFIC METHOD

(Panic)

Identify what you know (or don't know)

If not, why?

Decide if the result makes sense.

Settle on problem solving method

Predict what the result should look like

Attempt to solve

Motivating Question: In general, how do I approach a given problem?

Prior Knowledge

Visualization: What tools can we use to visualize the problem?

Application

1. Is this an application?
 If so, what is the underlying concept?

2. How could I apply this concept in real life?

Contextualize

How does this compare to other problems I have seen in other (science) courses/contexts?

Compare/Contrast

Is this a generalization of another concept? How is it the same/different?

Use of Resources:

What are relevant definitions?

Are there any helpful facts or theorems that apply?
APPENDIX B: SAMPLE SYLLABUS

MA 141-001, Spring 2018: Calculus I
MWF 8:30a-9:20a, SAS 1102

Instructor: Faye Pasley
Office: LAU 208 (click for map)
Office Hours: MH 9:30a – 10:30a & by appointment
Email: lPasley@ncsu.edu
Website: http://www4.ncsu.edu/~lPasley

Teaching Assistant: XXXXX
Office: XXXXX
Office Hours: XXXXX
Email: XXXXXX

Prerequisites. MA 111 or MA 108 with grade of C- or better, or 550 or better on the SAT Subject Test in Mathematics Level 2 or the NCSU Math Skills Test, or 2 or better on an AP Calculus exam; credit is not allowed for both MA 141 and MA 121 or MA 131.

Course Description and Learning Objectives. First of three semesters in a calculus sequence for science and engineering majors. Functions, graphs, limits, derivatives, rules of differentiation, definite integrals, fundamental theorem of calculus, applications of derivatives and integrals. Use of computation tools. The successful student will be able to:

1. Identify common underlying concept of a given problem
2. Use definitions, facts, and theorems to communicate a problem and its solution effectively
3. Formulate arguments including appropriate notation and logical structure
4. Use tools from single variable calculus to visualize and/or (re)interpret a given problem

Class Materials.
1. WebAssign access code: $67.95 for access to homework assignments and study materials via WebAssign at http://webassign.ncsu.edu.
3. Five small blue “examination” booklets: $0.50 each at campus bookstore. Submit blank books to instructor before the first exam: do not write anything on the books. Two bonus points will be added to the first test grade for submitting blue books before the first test; otherwise, these points will be deducted after the second test.

A scientific calculator is permitted, but not required. Graphing calculators will not be allowed.

Recitation. There are two recitation sections for this class: T/H 8:30a-9:20a and T/H 3p-3:50p. Attendance for recitation is required and ties into the class attendance policy. Some days will be practice days, some will be question days. Either way, students should come prepared with questions for the teaching assistant based on Webassign problems or extra practice problems assigned by the instructor. Please note that each occurrence of working on other schoolwork, texting, chatting with other students, etc. will count as half an absence.

Attendance Policy. Attendance will be taken as per NCSU policy, but does not count toward the course grade. Students using electronics during class without permission will be counted tardy; 2 instances of tardiness equate to 1 absence. If you have 8 or fewer total absences, you may replace your lowest in-class test score with your score on the final exam if it helps your grade.

Structure and Grading. Letter grading follows the +/- 10 point scale on the left below. All other grading in accordance with University policy. Grades will be determined as shown on the right below.
MA 141-001, Spring 2018

Grading Scale

<table>
<thead>
<tr>
<th>Grade</th>
<th>Score Range</th>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>98 – 100</td>
<td>4 Maple Assignments</td>
<td>8%</td>
</tr>
<tr>
<td>A</td>
<td>93 – 97.99</td>
<td>WebAssign</td>
<td>12%</td>
</tr>
<tr>
<td>A-</td>
<td>90 – 92.99</td>
<td>Quizzes (weekly)</td>
<td>16%</td>
</tr>
<tr>
<td>B+</td>
<td>87 – 89.99</td>
<td>4 in-class Tests</td>
<td>48%</td>
</tr>
<tr>
<td>B</td>
<td>83 – 86.99</td>
<td>Final Exam</td>
<td>16%</td>
</tr>
<tr>
<td>B-</td>
<td>80 – 82.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C+</td>
<td>77 – 79.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>73 – 76.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-</td>
<td>70 – 72.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D+</td>
<td>67 – 69.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>63 – 66.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-</td>
<td>60 – 62.99</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maple

Assignments #0-3 are obtained, submitted, and graded online at http://emarker.math.ncsu.edu/CalculusWithMaple/, where help files can also be found. For more assistance, go to the MMC in SAS 2103/2105.

WebAssign

WebAssign homework assignments are obtained and graded for correctness online at http://webassign.ncsu.edu. Assignments will be due throughout the semester at various times. It is very important to keep up with work and not save it for the last minute: WebAssign composes a large portion of your final grade and **no make-up work is available for missed assignments**.

Quizzes

There will be 1 graded quiz each week announced in advance. Students should be prepared to answer each question thoroughly and precisely as if they were test questions. There will be no make-up quizzes, but the two lowest quiz grades will be dropped at the conclusion of the semester. In addition, there may extra credit quizzes, **not announced in advance**, throughout the duration of the semester.

Tests

The 4 in-class tests are closed-book, closed-note, with no graphing calculators permitted. The following test material is subject to change at the instructor’s discretion.

- **Test #1:** Monday, February 5 (§3.1 – 2.1)
- **Test #2:** Friday, March 2 (§2.1 – 2.7)
- **Test #3:** Wednesday, March 28 (§3.1 – 3.6)
- **Test #4:** Friday, April 20 (§4.1 – 5.1)

Test Make-up Policy

Test make-ups are administered in accordance with University policy. Anticipated, excused absences (such as NCSU obligations, required court attendance, and religious observance) must be reported to the instructor with appropriate certification at least 1 week before the scheduled test date. Emergency excused absences must be reported with appropriate documentation within 1 week of returning to class. Each student gets 1 unexcused (e.g., oversleeping) test absence and must notify the instructor the day of the test – in this case, the student may replace the grade with 75% of their final exam grade score, but may no longer take advantage of the grade replacement bonus for good attendance.

Corrections to Grading

If you think an error may have been made in the grading of your test, carefully review the answer key posted on Moodle and then contact the instructor **within 1 week** of the test’s return with your question; grades will not be altered after this period of time. **Do NOT alter the original work.**

Final Exam

The final exam date is scheduled by the University for **Wednesday, May 9, 8a–11a** in SAS 1102 and is non-negotiable unless you have 3 exams within 24 hours. Determine if this is the case and contact the instructor at least 1 month before the final exam. There will be no other make-ups given. The final is CUMULATIVE; it will cover all material from tests #1-4 as well as sections 5.2 – 5.3.

Academic Integrity

Students may work together on homework and Maple, but must complete all quizzes and tests on their own (i.e., helping each other is okay, plagiarism and cheating are not); students are responsible for their own understanding of material. Study materials posted on Moodle may not be shared with students not enrolled in this semester’s class section. All students are expected to adhere to the University’s regulations on academic integrity. Documentation of violations will be submitted to the Office of Student Conduct. For more, see https://policies.ncsu.edu/policy/pol-11-35-01/. Your signature on any test or assignment indicates “I have neither given nor received unauthorized aid on this test or assignment.”
MA 141-001, Spring 2018

Resources for Assistance. Each of you can succeed as long as you take responsibility for seeking help as soon as you need it! Study groups are highly recommended. In addition, office hours exist for the sole purpose of helping students. Effectiveness is maximized if you arrive with specific questions in hand. For virtual assistance, a class Moodle site at https://wolframe.ncsu.edu/ will be maintained with course announcements and lecture materials. If emailing the instructor or TA directly, please include MA 141-001 in the subject line. Free drop-in tutoring and Maple help is available at the MMC in SAS 2103/2105 weekdays 8a-5p. For more info, see https://math.sciences.ncsu.edu/undergraduate/courses-faq/math-multimedia-center/.

Accommodations. Reasonable accommodations will be made for students with verifiable disabilities. To take advantage of available accommodations, students must register with Disability Services for Students at https://dso.dasa.ncsu.edu and then meet with the instructor. Please see the Academic Accommodations for Students with Disabilities Regulations (REG02:20.1).

Non-discrimination Policy. NC State University provides equality of opportunity in education and employment for all students and employees. Accordingly, NC State affirms its commitment to maintain a work environment for all employees and an academic environment for all students that is free from all forms of discrimination. Discrimination based on race, color, religion, creed, sex, national origin, age, disability, veteran status, or sexual orientation is a violation of state and federal law and/or NC State University policy and will not be tolerated. Harassment of any person (either in the form of quid pro quo or creation of a hostile environment) based on race, color, religion, creed, sex, national origin, age, disability, veteran status, or sexual orientation also is a violation of state and federal law and/or NC State University policy and will not be tolerated. Retaliation against any person who complains about discrimination is also prohibited. NC State’s policies and regulations covering discrimination, harassment, and retaliation may be accessed at http://policies.ncsu.edu/policy/pol-04-25-05. Any person who feels that he or she has been the subject of prohibited discrimination, harassment, or retaliation should contact the Office for Equal Opportunity (OEO) at 919-515-3148. For more information, see http://www.ncsu.edu/equal_op/.

Tentative Schedule. The schedule is subject to change at the discretion of the instructor.

<table>
<thead>
<tr>
<th>Week</th>
<th>M Lecture</th>
<th>T Recitation</th>
<th>W Lecture</th>
<th>H Recitation</th>
<th>F Lecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8 - 1/12</td>
<td>Syllabus, §0.1, 0.3</td>
<td>§0.3</td>
<td>§0.3</td>
<td>§0.2</td>
<td></td>
</tr>
<tr>
<td>1/15 - 1/19</td>
<td>No class</td>
<td>§0.4</td>
<td>Review Ch 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/22 - 1/26</td>
<td>§1.1 - 1.2</td>
<td>§1.2</td>
<td>§1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/29 - 2/2</td>
<td>§1.4</td>
<td>§2.1</td>
<td>Test 1 Review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/5 - 2/9</td>
<td>Test 1 (0.1 - 2.1)</td>
<td>§2.2</td>
<td>§2.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/12 - 2/16</td>
<td>§2.4</td>
<td>§2.5</td>
<td>Derivative practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/19 - 2/23</td>
<td>§2.6</td>
<td>§2.6</td>
<td>§2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/26 - 3/2</td>
<td>§2.7</td>
<td>Test 2 Review</td>
<td>Test 2 (2.1 - 2.7)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/5 - 3/9</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td>Spring Break</td>
<td></td>
</tr>
<tr>
<td>3/12 - 3/16</td>
<td>§3.1</td>
<td>§3.2</td>
<td>§3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/19 - 3/23</td>
<td>§3.4</td>
<td>§3.5</td>
<td>§3.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/26 - 3/30</td>
<td>Test 3 Review</td>
<td>Test 3 (3.1 - 3.6)</td>
<td>No class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/2 - 4/6</td>
<td>§4.1</td>
<td>§4.2</td>
<td>§4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/9 - 4/13</td>
<td>§4.4</td>
<td>§4.4 - 4.5</td>
<td>§4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/16 - 4/20</td>
<td>§5.1</td>
<td>Test 4 Review</td>
<td>Test 4 (4.1 - 5.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/23 - 4/27</td>
<td>§5.2</td>
<td>§5.3</td>
<td>Final Review</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Final Exam Form A

Read and follow directions carefully. Use your time wisely! You may not use a graphing calculator or any communication device during the test. You may use a simple non-graphing calculator. Show ALL work in your blue book. Make sure to include units in your answer if possible. Turn in your test inside your blue book; write the your name, your row, and test form on the outside. Good luck!

1. (20 pts) Evaluate the following limits. Justify your answer with a picture, algebra, or theorem.

(a) \(\lim_{x \to \infty} \frac{8 + (3x + 1)(x + 7)}{x^2 + 7} \)

(b) \(\lim_{x \to 4} g(x) \) when \(3x - 2 \leq g(x) \leq x^4 - x + 1 \)

(c) \(\lim_{x \to 3} \frac{1}{(x - 3)^2} \)

(d) \(\lim_{x \to 3} \frac{-1}{(x - 3)^3} \)

(e) \(\lim_{x \to \infty} \frac{\ln(-x)}{x} \)

2. (10 pts) A particle moves along the x-axis according to the equation \(s(t) = t^3 - 6t^2 + 9t \) after \(t \) seconds.

(a) Find the function which gives velocity of the particle.

(b) When is the particle moving left?

3. (10 pts) (a) What is the slope of the tangent line to the graph \(y = f(x) \) at the point \((c, f(c)) \)?

(b) What is the smallest slope for a tangent line to the graph of \(y = 2x^3 - 2x^2 + 5x - 1 \)? Justify your answer.

4. (10 pts) Evaluate the following integrals.

(a) \(\int 8x^2(x^4 + 1)^3 \, dx \)

(b) \(\int_1^2 \ln(\sqrt{x}) \, dx \) [Hint: Use a log rule first]
5. (15 pts) (a) Shade the region bounded between the curves \(x = 0, y = h, \) and \(ry = hx \) where \(r \) and \(h \) are positive numbers.

(b) Draw the solid of revolution generated by rotating this region about the y-axis.

(c) Find the volume of the solid of revolution drawn in part (a) using calculus.

6. (10 pts) (a) Given \(h(x) = \frac{x^2 + x}{x^2 - 3x - 4}, \) state whether the function is continuous at \(x = -1 \) and \(x = 4. \) If not, state the type of discontinuity.

(b) Is \(h \) differentiable at \(x = -1 \) and \(x = 4? \) Justify your answer.

7. (10 pts) Water is flowing at the rate of 8 \(\text{ft}^3/\text{min} \) out of a tank that is in the shape of a right circular cylinder whose base radius is 2 ft. How fast is the water level changing? Volume of the tank is given by \(V = \pi r^2 h. \)

8. (15 pts) (a) Use the limit definition of derivative to find \(f'(x) \) when \(f(x) = \frac{3}{1 - x}. \)

(b) Find \(g'(x) \) when \(g(x) = 3\arctan(x^2). \)

(c) Find \(\frac{dy}{dx} \) when \(y = (\cos x)^2. \)
Teaching Assistant Evaluation Form

The respondent’s email address (smsulli2@ncsu.edu) was recorded on submission of this form.

Name of TA

Faye Pasley

Semester of evaluation

Spring 2018

Class the TA taught/helped with

141

Role of TA

- [] Instructor
- [] Recitation Leader
- [] Lecture Assistant
- [] Grader

TA Instructor Evaluation Form
Date of observation

2-14-2018

Approximate size of class

60

The instructor

<table>
<thead>
<tr>
<th></th>
<th>Extremely well</th>
<th>Very well</th>
<th>Adequately</th>
<th>Inadequately</th>
<th>Very Poorly</th>
<th>Did not observe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was prepared for class</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presented the material</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was enthusiastic about</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spoke clearly and</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Made effective use of</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encouraged student</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated students</td>
<td>◉</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://docs.google.com/forms/d/1XxBrAwW0iINuXw5Ge9iXdxYR8sKDzXy0-Ua_OwP9jZ6/edit?response=ACYD8Nj4bXV0LaZdpWZ1d_t3y3pVeyx2NeC

Please comment on the instructors strengths or weaknesses.

Faye explains the material well, has good handwriting/ boardwork, and has managed to get good participation from students throughout the class (i.e. not just in the front row). I think that she needs to work on letting the students struggle a bit with problems she gives in class before jumping in to help them with hints. We talked about strategies for this.

Would you recommend the instructor to teach this class again?
Yes

Recitation Leader Evaluation

If you observed your TA leading a recitation, please comment on how you thought it went.

Was your TA a fair and effective grader? Was their grading done on time?

Do you think the TA is ready to teach his or her own class?

Date of observation
April 11

Approximate size of class
53

The instructor

<table>
<thead>
<tr>
<th></th>
<th>Extremely well</th>
<th>Very well</th>
<th>Adequately</th>
<th>Inadequately</th>
<th>Very Poorly</th>
<th>Did not observe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was prepared for class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Presented the material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>effectively</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Was enthusiastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>about the material</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spoke clearly and audibly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Made effective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>use of the board</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or other visual display</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encouraged student</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>involvement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treated students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>respectfully</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Please comment on the instructors strengths or weaknesses.

Faye is a very solid instructor. She explains well, gives students the opportunity to work on problems in class, gets good levels of participation, has respectful attitude toward the students and vice versa.

Would you recommend the instructor to teach this class again?

Yes

Recitation Leader Evaluation

If you observed your TA leading a recitation, please comment on how you thought it went.

Was your TA a fair and effective grader? Was their grading done on time?

Do you think the TA is ready to teach his or her own class?