Konstantinos Lentzos ${ }^{1}$, Lillian F. Pasley ${ }^{2}$
${ }^{1}$ TU Dortmund, ${ }^{2}$ North Carolina State University

Background

- A determinantal representation of $f \in \mathbb{R}[t, x, y]_{d}$ is a $d \times d$ matrix $M=t M_{0}+x M_{1}+y M_{2}$ such that $f=\operatorname{det}(M)$. It is called definite if there exists $e \in \mathbb{R}^{3}$ so that $M(e) \succ 0$. Polynomials which have definite determinantal representations are called hyperbolic.
- A smooth projective curve of degree d is called hyperbolic if the real points in its zero set consist of a maximal number of nested ovals.
- The cyclic group of order n is $C_{n}=\langle\Phi\rangle$ and the dihedral group of order n is $D_{n}=\langle\Phi, \Gamma\rangle$ where

$$
\Phi=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (2 \pi / n) & \sin (2 \pi / n) \\
0 & -\sin (2 \pi / n) & \cos (2 \pi / n)
\end{array}\right) \text { and } \Gamma=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

- The groups C_{n} and D_{n} act on $\mathbb{R}[t, x, y]$ where Φ is a rotation around $[1: 0: 0]$ and Γ is a reflection across the line $y=0$.

Figure 1: A hyperbolic curve of degree 8 invariant under D_{6} in the hyperplane $\{t=1\}$ (left) and a hyperbolic curve of degree 11 invariant under C_{7} in the hyperplane $\{t=1\}$ (right).

Main Problem and Results
Theorem $([1,3])$. If $A \in \mathbb{C}^{d \times d}$ satisfies

$$
\begin{equation*}
A_{i j}=0 \text { if } i-j \bmod n \not \equiv-1, \tag{1}
\end{equation*}
$$

then the plane curve defined by

$$
\begin{equation*}
f_{A}=\operatorname{det}\left(t I+x\left(\frac{A+A^{*}}{2}\right)+y\left(\frac{A-A^{*}}{2 i}\right)\right) \tag{2}
\end{equation*}
$$

is hyperbolic with respect to $(1,0,0)$ and invariant under the cyclic group of order n.

Figure 2: A hyperbolic quintic f_{A} invariant under C_{3} in the hyperplane $\{t=1\}$ (left) and the dual of f_{A} with shaded convex hull corresponding to $\mathcal{W}(A)$ (right).

Question [2]. If $f \in \mathbb{R}[t, x, y]_{d}$ is hyperbolic and invariant under C_{n}, does f have a determinantal representation of the form (2) where A satisfies (1)?

- We give a positive result in the case where $d=n$.

Theorem 1 (Lentzos-P [3]). Let $f \in \mathbb{R}[t, x, y]_{n}$ be monic and hyperbolic with respect to $(1,0,0)$. If f is invariant under C_{n}, then there exists $A \in \mathbb{C}^{n \times n}$ satisfying (1) such that $f=f_{A}$. Additionally, if f is invariant under D_{n}, then there exists $B \in \mathbb{R}^{n \times n}$ satisfying (1) such that $f=f_{B}$.

Problem with Generalization

- The hope is to generalize Theorem 1 for any $d>n$, but the construction only works for smooth curves.
- Issue: Invariant curves with $d \bmod n \geq 3$ always have multiple complex singularities, so "most" of these curves are singular!

Connection to the Numerical Range

- The numerical range of $A \in \mathbb{C}^{d \times d}$ is

$$
\begin{equation*}
\mathcal{W}(A)=\left\{x^{*} A x \mid x \in \mathbb{C}^{d}, x^{*} x=1\right\} \tag{3}
\end{equation*}
$$

- As a subset of $\mathbb{C} \cong \mathbb{R}^{2}, \mathcal{W}(A)$ is the convex hull of $g(1, x, y)$ where $\{g=0\}$ is dual to the curve defined by $\left\{f_{A}=0\right\}$ (see Figure 2).

Theorem 2 (Lentzos-P [3]). If $\mathcal{W}(A)$ is invariant under rotation by the angle $2 \pi / n$ for any $A \in \mathbb{C}^{n \times n}$, then there exists $B \in \mathbb{C}^{n \times n}$ satisfying (1) such that $\mathcal{W}(B)=\mathcal{W}(A)$.

References

[^0]
[^0]: [1] Mao-Ting Chien and Hiroshi Nakazato. Hyperbolic forms associated with cyclic weighted shift matrices. Linear Algebra Appl., 439(11):3541-3554, 2013.
 [2] Mao-Ting Chien and Hiroshi Nakazato. Determinantal representations of hyperbolic forms via weighted shift matrices. Appl. Math. Comput. 258(C):172-181, 2015.
 [3] Konstantinos Lentzos and Lillian F. Pasley. Determinantal representations of invariant hyperbolic plane curves. Linear Algebra Appl., 556:108-130, 2018.

