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Background

• A determinantal representation of f ∈ R[t, x, y]d
is a d × d matrix M = tM0 + xM1 + yM2 such that
f = det(M). It is called definite if there exists e ∈ R3

so that M(e) � 0. Polynomials which have definite
determinantal representations are called hyperbolic.

• A smooth projective curve of degree d is called hyper-
bolic if the real points in its zero set consist of a maximal
number of nested ovals.

• The cyclic group of order n is Cn = 〈Φ〉 and the
dihedral group of order n is Dn = 〈Φ,Γ〉 where

Φ =



1 0 0
0 cos(2π/n) sin(2π/n)
0− sin(2π/n) cos(2π/n)



and Γ =



1 0 0
0 1 0
0 0−1



.

• The groups Cn and Dn act on R[t, x, y] where Φ is a
rotation around [1 : 0 : 0] and Γ is a reflection across the
line y = 0.
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Figure 1: A hyperbolic curve of degree 8 invariant under D6 in the hyperplane
{t = 1} (left) and a hyperbolic curve of degree 11 invariant under C7 in the
hyperplane {t = 1} (right).

Main Problem and Results

Theorem ([1, 3]). If A ∈ Cd×d satisfies
Aij = 0 if i− j mod n 6≡ −1, (1)

then the plane curve defined by

fA = det

tI + x



A + A∗

2


+ y



A− A∗

2i




(2)

is hyperbolic with respect to (1, 0, 0) and invariant under
the cyclic group of order n.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

-150 -100 -50 0 50 100
-150

-100

-50

0

50

100

Figure 2: A hyperbolic quintic fA invariant under C3 in the hyperplane {t = 1}
(left) and the dual of fA with shaded convex hull corresponding to W(A) (right).

Question [2]. If f ∈ R[t, x, y]d is hyperbolic and invari-
ant underCn, does f have a determinantal representation
of the form (2) where A satisfies (1)?

• We give a positive result in the case where d = n.

Theorem 1 (Lentzos–P [3]). Let f ∈ R[t, x, y]n be
monic and hyperbolic with respect to (1, 0, 0). If f
is invariant under Cn, then there exists A ∈ Cn×n

satisfying (1) such that f = fA. Additionally, if f
is invariant under Dn, then there exists B ∈ Rn×n

satisfying (1) such that f = fB.

Problem with Generalization

• The hope is to generalize Theorem 1 for any d > n,
but the construction only works for smooth curves.

• Issue: Invariant curves with d mod n ≥ 3 always
have multiple complex singularities, so “most” of these
curves are singular!

Connection to the Numerical Range

• The numerical range of A ∈ Cd×d is

W(A) = {x∗Ax | x ∈ Cd, x∗x = 1}. (3)

• As a subset of C ∼= R2, W(A) is the convex hull of
g(1, x, y) where {g = 0} is dual to the curve defined by
{fA = 0} (see Figure 2).

Theorem 2 (Lentzos–P [3]). If W(A) is invariant
under rotation by the angle 2π/n for any A ∈ Cn×n,
then there exists B ∈ Cn×n satisfying (1) such that
W(B) =W(A).
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