NC STATE UNIVERSITY

Background

• A determinantal representation of $f \in \mathbb{R}[t, x, y]_d$ is a $d \times d$ matrix $M = tM_0 + xM_1 + yM_2$ such that $f = \det(M)$. It is called *definite* if there exists $e \in \mathbb{R}^3$ so that $M(e) \succ 0$. Polynomials which have definite determinantal representations are called *hyperbolic*.

• A smooth projective curve of degree d is called hyper*bolic* if the real points in its zero set consist of a maximal number of nested ovals.

• The cyclic group of order n is $C_n = \langle \Phi \rangle$ and the dihedral group of order n is $D_n = \langle \Phi, \Gamma \rangle$ where

 $\Phi = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2\pi/n) & \sin(2\pi/n) \\ 0 - \sin(2\pi/n) & \cos(2\pi/n) \end{pmatrix} \text{ and } \Gamma = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 - 1 \end{pmatrix}.$

• The groups C_n and D_n act on $\mathbb{R}[t, x, y]$ where Φ is a rotation around [1:0:0] and Γ is a reflection across the line y = 0.

Figure 1: A hyperbolic curve of degree 8 invariant under D_6 in the hyperplane $\{t = 1\}$ (left) and a hyperbolic curve of degree 11 invariant under C_7 in the hyperplane $\{t = 1\}$ (right).

Determinantal representations of invariant hyperbolic plane curves

Main Problem and Results

Theorem ([1, 3]). If $A \in \mathbb{C}^{d \times d}$ satisfies $A_{ij} = 0$ if $i - j \mod n \not\equiv -1$, then the plane curve defined by $f_A = \det \left(tI + x \right) \frac{A + A^*}{2}$ is hyperbolic with respect to (1, 0, 0) and invariant under the cyclic group of order n.

Figure 2: A hyperbolic quintic f_A invariant under C_3 in the hyperplane $\{t = 1\}$ (left) and the dual of f_A with shaded convex hull corresponding to $\mathcal{W}(A)$ (right).

Question [2]. If $f \in \mathbb{R}[t, x, y]_d$ is hyperbolic and invariant under C_n , does f have a determinantal representation of the form (2) where A satisfies (1)?

• We give a positive result in the case where d = n.

Theorem 1 (Lentzos–P [3]). Let $f \in \mathbb{R}[t, x, y]_n$ be monic and hyperbolic with respect to (1, 0, 0). If f is invariant under C_n , then there exists $A \in \mathbb{C}^{n \times n}$ satisfying (1) such that $f = f_A$. Additionally, if f is invariant under D_n , then there exists $B \in \mathbb{R}^{n \times n}$ satisfying (1) such that $f = f_B$.

Konstantinos Lentzos¹, Lillian F. Pasley²

¹TU Dortmund, ²North Carolina State University

- (1)

$$\frac{A^*}{2i} + y \left(\frac{A - A^*}{2i} \right)$$
(2)

Problem with Generalization

• The hope is to generalize Theorem 1 for any d > n, but the construction only works for smooth curves.

• Issue: Invariant curves with $d \mod n \geq 3$ always have multiple complex singularities, so "most" of these curves are singular!

Connection to the Numerical Range

- ${f_A = 0}$ (see Figure 2).

Theorem 2 (Lentzos–P [3]). If $\mathcal{W}(A)$ is invariant under rotation by the angle $2\pi/n$ for any $A \in \mathbb{C}^{n \times n}$, then there exists $B \in \mathbb{C}^{n \times n}$ satisfying (1) such that $\mathcal{W}(B) = \mathcal{W}(A).$

- 2013.
- 258(C):172–181, 2015.

• The numerical range of $A \in \mathbb{C}^{d \times d}$ is $\mathcal{W}(A) = \{ x^* A x \mid x \in \mathbb{C}^d, x^* x = 1 \}.$ (3)

• As a subset of $\mathbb{C} \cong \mathbb{R}^2$, $\mathcal{W}(A)$ is the convex hull of g(1, x, y) where $\{g = 0\}$ is dual to the curve defined by

References

[1] Mao-Ting Chien and Hiroshi Nakazato. Hyperbolic forms associated with cyclic weighted shift matrices. *Linear Algebra Appl.*, 439(11):3541–3554,

[2] Mao-Ting Chien and Hiroshi Nakazato. Determinantal representations of hyperbolic forms via weighted shift matrices. Appl. Math. Comput.,

[3] Konstantinos Lentzos and Lillian F. Pasley. Determinantal representations of invariant hyperbolic plane curves. *Linear Algebra Appl.*, 556:108–130, 2018.